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Abstract

In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by

using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient

that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two

equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the

cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are

coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal

hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For

comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis

shows that the results from these two methods are in a good agreement with each other.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In underwater acoustics and high power ultrasonics, sandwich piezoelectric ultrasonic composite
transducers, which are also known as Langevin piezoelectric composite ultrasonic transducers, are widely
used as large power sound radiators. This kind of composite ultrasonic transducers usually consist of a
number of thickness-polarized piezoelectric ceramic rings which are sandwiched between two metal masses,
the two front and back metal masses may be solid or hollow metal cylinder. According to traditional one-
dimensional (1D) design theory of this kind of transducers [1–5], it is required that the lateral or radial
dimensions of the transducer must be far less than its longitudinal dimension. Generally speaking, when the
radial dimensions are less than a quarter of the longitudinal wavelength, 1D theory can be used and the
measured resonance frequencies of the transducer are in a good agreement with the theoretical results.

However, along with the development of ultrasonic technology, ultrasonic transducers are being used in
more and more new applications, such as high frequency ultrasonic metal and plastic welding and some
practical applications concerning very large ultrasonic power. In these cases, the radial dimensions of the
transducer are usually larger than a quarter of the longitudinal wavelength. Therefore, traditional 1D
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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longitudinal design theory is no longer applicable for sandwich transducers with large radial dimensions.
Specifically speaking, the following three cases should be given special attention in their theoretical design and
calculation. (1) High frequency sandwich piezoelectric composite transducers such as those used in ultrasonic
metal welding. When the resonance frequency of the sandwich transducer is increased, the longitudinal
wavelength and geometrical dimension will decrease accordingly. According to the assumptions introduced in
1D longitudinal theory, the radial dimensions of the transducer must also be decreased. Therefore, the cross
section of the transducer is small and the mechanical strength and the power capacity will be lowered. To raise
the mechanical strength and the power capacity, the radial dimensions of the high frequency sandwich
transducer must be increased; thus, the radial vibration in this kind of transducers must be considered and the
coupled vibration of the transducer should be analyzed. (2) High power sandwich composite transducers. In
some ultrasonic applications, such as ultrasonic metal forming and ultrasonic plastic welding, very large
ultrasonic power is needed; therefore, the radial dimensions exceed a quarter of the longitudinal wavelength
and 1D theory is also not applicable. (3) In recent years, a new type of high power ultrasonic radiators are
used in ultrasonic cleaning and ultrasonic sonochemistry, the ultrasonic radiator is a metal tube with large
radial dimension. When it is excited by a sandwich piezoelectric transducer longitudinally, the radiator will
vibrate in both longitudinal and radial direction because of the Poisson’s effect; therefore, large power can be
given out. In the above-mentioned three cases, the vibration of the transducer or the radiator is a coupled one
of longitudinal and radial vibrations. Therefore, new design theory must be developed in order to study the
coupled vibration of the sandwich transducers with large cross section or high resonance frequency.

For the coupled vibration of isotropic metal rod and hollow cylinder, a number of research works can be
found in previous literatures. Rayleigh and Love studied the sound velocity of longitudinal vibration in rods
and obtained the corrected sound velocity and the dispersion equation [6,7]. Mindlin analyzed the
axisymmetric vibration of disks using complex second-order approximate theory and obtained the dispersion
equation [8,9]. At the same time, numerical methods are also used in the vibration analysis of elastic cylinders
and disks [10,11].

An approximate analytical method known as apparent elasticity method or equivalent elastic method has
also been used to analyze the coupled vibration of ultrasonic vibrating system [12–14]. In this paper, the
hollow cylinder ultrasonic radiator with large lateral and longitudinal dimensions is analyzed by using the
equivalent elastic method. The resonance frequency equations are derived analytically and numerical methods
are also used to analyze the coupled vibration. It is illustrated that the results from the analytical method are
in good agreement with those from numerical method.

2. coupled vibration of an isotropic metal hollow cylinder with large lateral and longitudinal dimensions

Fig. 1 illustrates a large-dimension metal hollow cylinder. This means that the cylinder has a large lateral
geometrical dimension compared with its longitudinal dimension; i.e., the radius is comparable to its length. In
this case, the vibration of the cylinder is more complex than that of a slender cylinder or a thin ring. For a
slender cylinder whose length is much larger than its radius, its vibration is a simple 1D longitudinal vibration.

In the figure, r and Z are radial and axial coordinates. The height, the inner and the outer radius of the
cylinder are h, b and a, respectively, and a is comparable to h. In the analysis, the cylindrical coordinate is used
and the direction of the height of the cylinder is along that of the Z-axis. When the height of the cylinder is
much larger or less than its radius, the vibration of the cylinder can be reduced to 1D longitudinal vibration of
a slender cylinder or plane radial vibration of a thin circular ring. For these cases, the problem is simple and
1D theory can be used. However, when the dimensions of the cylinder do not meet the requirement of 1D
theory, the equations describing the coupled vibration of finite-dimension cylinders must be solved. Because of
the complexity of the coupled vibration equations, the analytical solutions are difficult to obtain. In the
following analysis, the equivalent mechanical coupling coefficient is introduced and the coupled vibration of
large-dimension hollow cylinders is studied by using an approximate analytic method when the shearing
stresses and strains are ignored.

The basic principle of the approximate analytic method is outlined as follows. When the metal hollow
cylinder radiator is excited to vibrate in the longitudinal direction, the radial extensional vibration is produced
because of Poisson’s effect; the vibration of the radiator is a complex 3D coupled vibration, and its analytical



ARTICLE IN PRESS

Fig. 1. A metal hollow cylinder ultrasonic radiator with large dimension.
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solutions are difficult to obtain. To simplify the analysis, the shearing stress and strain in the cylinder
are ignored, and it is assumed that only extensional vibrations are considered. When equivalent elastic
constants and equivalent mechanical coupling coefficient are introduced, the complex axisymmetrical
coupled vibration of the metal hollow cylinder radiator with large dimension can be reduced to two equi-
valent extensional vibrations, one is the longitudinal extensional vibration in the Z-axis direction, and
the other is the plane radial vibrations in the radial direction. However, these two equivalent extensional
vibrations are not independent of each other; they are coupled together by means of the equivalent mechanical
coupling coefficients that are defined as the ratio of the mechanical stresses in different axial directions.
It should be noted that though the two introduced equivalent extensional vibrations in the cylinder are
similar to traditional 1D vibrations, they are entirely different. These two equivalent extensional
vibrations have different equivalent elastic constants. These equivalent elastic constants not only depend on
the material parameters, but also on the geometrical dimensions and the coupling of the vibrations in different
directions.

Based on the theory of elastic dynamics, for the axisymmetrical coupled vibration of a metal hollow
cylinder, when the shearing stresses and strains are ignored, we have, xy ¼ 0, Try ¼ Trz ¼ Tyz ¼ 0,
Sry ¼ Syz ¼ Srz ¼ 0. In this case, the following equations can be obtained:

r
q2xr

qt2
¼

qTr

qr
þ

Tr � Ty

r
, (1)

r
q2xz

qt2
¼

qTz

qz
. (2)

Here, r is the volume density of the metal hollow cylinder, xr, xy, xz are three displacement components in the
radial, tangential and height directions, Tr, Ty, Tz, Try, Trz, Tyz and Sr, Sy, Sz, Sry, Srz, Syz are stress and strain
components in the metal hollow cylinder. In cylindrical coordinates, the relationship between the strain and
the displacement are as follows:

Sr ¼
qxr

qr
; Sy ¼

xr

r
; Sz ¼

qxz

qz
, (3)



ARTICLE IN PRESS
S. Lin / Journal of Sound and Vibration 305 (2007) 308–316 311
Based on Hooker’s law, the relationship between the strain and the stress are expressed as

Sr ¼
1

E
Tr � n Ty þ Tzð Þ½ �, (4)

Sy ¼
1

E
Ty � n Tr þ Tzð Þ½ �, (5)

Sz ¼
1

E
Tz � n Ty þ Trð Þ½ �. (6)

Here, E and n are Young’s modulus and Poisson’s ratio. Let n ¼ Tz/(Tr+Ty), which is defined as the
equivalent mechanical coupling coefficient. Eqs. (4)–(6) can be rewritten as the following forms:

Sr � Sy ¼
1þ n

E
ðTr � TyÞ, (7)

Sr þ Sy ¼
1� n� 2nn

E
ðTr þ TyÞ, (8)

Sz ¼
1� n=n

E
Tz. (9)

After the above transformations, it can be seen that when the equivalent mechanical coupling coefficient is
introduced, the coupled vibration of the metal hollow cylinder can be reduced to two equivalent 1D
vibrations, one is the equivalent longitudinal vibration which is described by Eqs. (2) and (9), the other is the
equivalent planar radial vibration which is described by Eqs. (1), (7) and (8). However, it should be noted that
these two equivalent vibrations are not independent; they are coupled to each other by the equivalent
mechanical coupling coefficient. In the following analysis, these two equivalent vibrations will be analyzed,
respectively.

2.1. Equivalent plane radial vibration of a metal hollow cylinder in coupled vibration

From Eqs. (7) and (8) we have

Tr � Ty ¼
E

1þ n
ðSr � SyÞ, (10)

Tr ¼
E

2

Sr � Sy

1þ n
þ

Sr þ Sy

1� n� 2nn

� �
. (11)

Substituting the expressions of Tr and Tr�Ty into Eq. (1) and using Eq. (3) yields

q2xr

qt2
¼ V 2

r

q2xr

qr2
þ

1

r

qxr

qr
�

xr

r2

� �
. (12)

Here, V2
r ¼ Er=r, Er ¼ E(1�nn)/(1+n)(1�n�2nn). Vr is defined as the equivalent radial speed of sound, and Er

is equivalent radial elastic constant. For harmonic vibration, substituting the radial displacement component
xr ¼ xr0 exp(jot) into Eq. (12) yields

d2xr0

dr2
þ

1

r

dxr0

dr
�

xr0

r2
þ k2

rxr0 ¼ 0. (13)

Here xr0 is a function of radial coordinate, kr ¼ o/Vr, kr is called the equivalent radial wavenumber. It is
obvious that Eq. (13) is Bessel equation of order one, its solution is

xr0 ¼ AJ1ðkrrÞ þ BY 1ðkrrÞ½ �. (14)

Here A and B are constants, J1(krr) and Y1(k1r) are Bessel functions. When the metal hollow cylinder is free
from external radial forces, the boundary conditions for the cylinder is Fra ¼ �Frjr ¼ a ¼ 0,
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Frb ¼ �Frjr ¼ b ¼ 0. Here Fr ¼ Tr �Ss is radial force, Ss ¼ 2prh is the side area of the cylinder. Substituting
Eq. (14) into Eqs. (3) and (11) yields

Tr ¼
E

2

A½krJ0ðkrrÞ � 2J1ðkrrÞ=r� þ B½krY 0ðkrrÞ � 2Y 1ðkrrÞ=r�

1þ n
þ

AkrJ0ðkrrÞ þ BkrY 0ðkrrÞ

1� n� 2nn

� �
. (15)

Using the boundary conditions of the metal hollow cylinder in the radial direction, the following expressions
can be obtained:

AJðaÞ þ BY ðaÞ ¼ 0, (16)

AJðbÞ þ BY ðbÞ ¼ 0, (17)

where J(a) ¼ J(x)jx ¼ a, J(b) ¼ J(x)jx ¼ b, Y(a) ¼ Y(x)jx ¼ a, Y(b) ¼ Y(x)jx ¼ b. J(x) and Y(x) are two introd-
uced functions, their expressions are

JðxÞ ¼ krJ0ðkrxÞ � 2J1ðkrxÞ=x
� 	

ð1� n� 2nnÞ=ð1þ nÞ þ krJ0ðkrxÞ, (18)

Y ðxÞ ¼ ½krY 0ðkrxÞ � 2Y 1ðkrxÞ=x�ð1� n� 2nnÞ=ð1þ nÞ þ krY 0ðkrxÞ. (19)

Using Eqs. (16) and (17), the equivalent resonance frequency equation for the equivalent radial vibration of
the hollow metal cylinder in coupled vibration can be obtained as

JðaÞY ðbÞ � JðbÞY ðaÞ ¼ 0. (20)

Eq. (20) can be rewritten as the following form:

kraJ0ðkraÞ � ð1� n� 2nnÞ=ð1� nnÞJ1ðkraÞ

krbJ0ðkrbÞ � ð1� n� 2nnÞ=ð1� nnÞJ1ðkrbÞ
¼

kraY 0ðkraÞ � ð1� n� 2nnÞ=ð1� nnÞY 1ðkraÞ

krbY 0ðkrbÞ � ð1� n� 2nnÞ=ð1� nnÞY 1ðkrbÞ
. (21)

It can be seen that when the coupling between the radial vibration and the longitudinal vibration in the metal
hollow cylinder is considered, the equivalent radial resonance frequency equation is different from that of a
thin metal ring in planar radial vibration. However, when the equivalent mechanical coupling coefficient
becomes zero, Eq. (20) can be reduced to that of a thin metal ring.

On the other hand, it is obvious that the solution to Eq. (21) depends not only on the material parameter
and the geometrical dimensions, but also on the equivalent mechanical coupling coefficient. Therefore, the
resonance frequency cannot be found only from Eq. (21). Another equation is needed, which is the resonance
frequency equation for the equivalent longitudinal vibration in the hollow cylinder and it will be analyzed in
the following section of this paper.

2.2. Equivalent longitudinal vibration of a metal hollow cylinder in coupled vibration

From Eq. (9) we have

Tz ¼ EzSz. (22)

Here Ez ¼ E/(1�n/n), Ez is called the equivalent longitudinal elastic constant. Substituting Eq. (22) into the
longitudinal motion Eq. (2) yields

q2xz=qt2 ¼ V 2
zðq

2xz=qz2Þ. (23)

Here, Vz ¼ (Ez/r)
1/2, Vz is defined as the equivalent longitudinal sound of speed. For harmonic motion,

xz ¼ xz0exp(jot), Eq. (23) can be reduced to

d2xz0=dz2 þ k2
zxz0 ¼ 0. (24)

Here kz ¼ o/Vz, kz is called the equivalent longitudinal wavenumber of the equivalent longitudinal vibration
of the metal hollow cylinder. The solution of Eq. (24) is

xz0 ¼ Azsin ðkzzÞ þ Bzcos ðkzzÞ. (25)



ARTICLE IN PRESS
S. Lin / Journal of Sound and Vibration 305 (2007) 308–316 313
Here Az and Bz are constants that can be determined by the longitudinal boundary conditions. When the two
end surfaces of the metal hollow cylinder are free, the boundary conditions are

F1z ¼ �F zjz¼0 ¼ 0; F2z ¼ �F zjz¼h ¼ 0. (26)

Here, Fz ¼ Tz S, S ¼ p(a2�b2) is the cross-sectional area of the metal hollow cylinder. Using Eqs. (26) and (3),
the resonance frequency equation for the equivalent longitudinal vibration in the metal hollow cylinder can be
obtained as

sin ðkzhÞ ¼ 0. (27)

It can be seen that the resonance frequency equation (27) is similar to that of a slender metal hollow cylinder in
longitudinal vibration. However, as the equivalent longitudinal wavenumber kz depends on the equivalent
mechanical coupling coefficient, it is impossible to obtain the longitudinal resonance frequency only
from Eq. (27).

Eqs. (21) and (27) are the combined resonance frequency equations for a metal cylinder in coupled
vibration; they describe the relationship among the material parameter, the geometrical dimensions, the
vibrational mode, and the resonance frequencies of the hollow metal cylinder in coupled vibration. By solving
Eqs. (21) and (27), it can be seen that two groups of solutions can be found, which are noted as fr, nr and fz, nz.
Considering the practical vibration modes of the cylinder, it can be concluded that these two groups of
solutions correspond to two different vibrational modes of the metal cylinder, one is the longitudinal
vibration, and the other is the radial vibration. The two resonance frequencies fr and fz are the longitudinal
and radial resonance frequencies. It should be noted that the frequencies fr and fz from Eqs. (21) and (27) are
different from those from 1D theory.

From the above analysis, it can be seen that there are two kinds of resonance frequencies for the coupled
vibration of the metal hollow cylinder. This is different from the results of 1D theory. According to 1D theory,
for a fixed vibrational order, only one frequency can be obtained for a slender cylinder or a thin ring. On the
other hand, it can be seen from the solutions of Eqs. (21) and (27) that when the geometrical dimensions
satisfy certain conditions, for example, hba or h5a, the two frequencies from Eqs. (21) and (27) are far away
from each other. Therefore, the longitudinal vibration is weakly coupled with the radial vibration. In this case,
the vibration of the metal hollow cylinder can be regarded as 1D longitudinal vibration, or plane radial
vibration.

Fig. 2 illustrates the theoretical relationship between the equivalent mechanical coupling coefficient and the
ratio of length over outer radius of a hollow cylinder radiator when its outer and inner radiuses are fixed. The
positive equivalent mechanical coupling coefficient corresponds to the equivalent longitudinal vibration, while
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the negative equivalent mechanical coupling coefficient corresponds to the equivalent radial vibration. It can
be seen that when the length is very small, the negative equivalent mechanical coupling coefficient is very small
and remains unchanged; this corresponds to the plane radial vibration of a thin metal ring. When the length is
much larger than the outer radius, the positive equivalent mechanical coupling coefficient tends to a constant.
This corresponds to the longitudinal vibration of a slender metal cylinder.

Figs. 3 and 4 are theoretical relationship between the radial and longitudinal resonance frequency and the
ratio of length over outer radius of a hollow cylinder radiator when the outer and the inner radius are fixed. It
can be seen that when the inner and the outer radius are fixed, the radial resonance frequency is decreased
when its thickness is increased. The reason is that when the thickness is increased, the longitudinal vibration is
produced due to Poisson’s effect; the equivalent mass is accordingly increased. For the longitudinal vibration,
when the length of the cylinder is increased, the resonance frequency is decreased. The reason is that the
longitudinal resonance frequency is inversely proportional to its length.

3. Theoretical simulation of the resonance frequency of a metal hollow cylinder with large lateral and longitudinal

dimensions

Using the above-developed theory, the resonance frequency of metal hollow cylinders with large lateral and
longitudinal dimensions are simulated theoretically. The metal hollow cylinder material used here is steel, its
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Fig. 5. FEM analysis mode shape for the equivalent radial vibration of a cylinder in coupled vibration.

Table 1

Theoretical resonance frequencies for the metal hollow cylinders in coupled vibration

h (m) a (m) b (m) i j f1r (Hz) f1z (Hz) fr (Hz) fz (Hz) Frn (Hz) fzn (Hz)

0.12 0.0445 0.0385 1 1 19888 21567 18193 24570 18303 24667

0.12 0.054 0.048 1 1 16174 21567 15528 23407 15567 23440

0.12 0.056 0.0525 1 1 15192 21567 14699 23221 14756 23248

0.12 0.057 0.051 1 1 15273 21567 14768 23240 14902 23348

Fig. 6. FEM analysis mode shape for the equivalent longitudinal vibration of a cylinder in coupled vibration.
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material parameters are as follows. r ¼ 7800 kg/m3, E ¼ 2.09� 1011N/m2, n ¼ 0.28. The resonance
frequencies of the metal hollow cylinders in coupled vibration are computed by solving the resonance
frequency equations. The results are shown in Table 1, where fr and fz are theoretical radial and longitudinal
fundamental resonance frequencies of the cylinders computed from Eqs. (21) and (27). For comparison,
numerical method (here, ANSYS software is used) is used to compute the resonance frequency, and the results
are also listed in Table 1. In the table, frn and fzn are radial and longitudinal resonance frequencies from the
numerical method. The analysis mode shapes for the equivalent radial vibration and the equivalent
longitudinal vibration of a cylinder with large lateral geometrical dimension in coupled vibration are shown in
Figs. 5 and 6. The type of elements is structural-solid-brick 8 nodes 45. It can be seen that the computed
frequencies from these two methods are in a good agreement with each other. On the other hand, the radial
and longitudinal resonance frequencies f1r and f1z from 1D theory are also given in Table 1 for comparison.
In the table, i and j correspond to longitudinal and radial vibrational orders of the metal hollow cylinder in
coupled vibration.

4. Conclusions

The coupled vibration of metal hollow cylinders is analyzed by using an approximate analytic method. The
resonance frequency equations are derived and the resonance frequencies are calculated and simulated. To
sum up the above analysis, the following conclusions can be drawn.
1.
 There are two kinds of resonance frequencies for a metal hollow cylinder in coupled vibration, one
corresponds to the longitudinal frequency, the other corresponds to the radial frequency, and they are
different from the results from 1D theory.
2.
 The resonance frequencies of some metal hollow cylinders in coupled vibration are obtained by using both
analytical and numerical methods. It is shown that the results from the approximate analytic method and
numerical methods are in a good agreement with each other.
3.
 The metal hollow cylinder with large dimensions can be used as a high power ultrasonic radiator.

It can be used in ultrasonic cleaning, ultrasonic liquid processing and sonochemistry. It has the advantage of
large radiation area and all-direction ultrasonic radiation.
References

[1] R.E. Horito, Free-flooding unidirectional resonators for deep-ocean transducers, Journal of the Acoustic Society of America 41 (1967)

158–166.

[2] P.J. Michael, Velocity control and the mechanical impedance of single degree of freedom electromechanical vibrators, Journal of the

Acoustic Society of America 84 (6) (1994–2001) 1988.

[3] R. Coates, R.F. Mathams, Design of matching networks for acoustic transducers, Ultrasonics 26 (2) (1988) 59–64.

[4] E.A. Neppiras, The pre-stressed piezoelectric sandwich transducer, Ultrasonics International Conference Proceedings, 1973, p. 295.

[5] T.J. Bulat, Macrosonics in industry: 3. Ultrasonic cleaning, Ultrasonics 12 (1974) 59–68.

[6] Lord Rayliegh, Theory of Sound, Dover Publications, New York, 1945.

[7] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1944.

[8] R.D. Mindlin, M.A. Medick, Extensional vibration of elastic plates, Journal of Applied Mechanics 26 (1959) 511–569.

[9] D.C. Gazis, R.D. Mindlin, Extensional vibration of waves in circular disk and a semi-infinite plate, Journal of Applied Mechanics 27

(1960) 541–547.

[10] G.M.L. Gladwell, U.C. Tahbildar, Finite element analysis of axisymmetric vibrations of cylinders, Journal of Sound and Vibration 22

(1972) 143–157.

[11] G.W. Mcmahon, Finite difference analysis of the vibration of solid cylinders, Journal of the Acoustical Society of America 48 (1970)

307–312.

[12] E. Mori, K. Itoh, A. Imamura, Analysis of a short column vibrator by apparent elasticity method and its applications, Ultrasonics

International Conference Proceedings, 1977, p. 262.

[13] E. Mori, Y. Tsuda, A new high power ultrasonic wave radiator for liquid medium, Ultrasonics International Conference Proceedings,

Brighton, 1981, pp. 307–312.

[14] S.Y. Lin, Frequency spectra of extensional vibration in isotropic short columns and thick circular disks, IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control 41 (4) (1994) 573–576.


	Coupled vibration of isotropic metal hollow cylinders �with large geometrical dimensions
	Introduction
	coupled vibration of an isotropic metal hollow cylinder with large lateral and longitudinal dimensions
	Equivalent plane radial vibration of a metal hollow cylinder in coupled vibration
	Equivalent longitudinal vibration of a metal hollow cylinder in coupled vibration

	Theoretical simulation of the resonance frequency of a metal hollow cylinder with large lateral and longitudinal dimensions
	Conclusions
	References


